
CTFBench: A New Method for Evaluating AI Smart Contract
Auditors – Balancing Vulnerability Detection and Reducing False
Alarms
Author: Igor Gulamov, ZeroPool

Introduction
Smart contract security has become a critical area in the blockchain industry due to the increasing number
of hacks and financial losses. Various audit tools are being developed to detect vulnerabilities – ranging from
static analysis to AI-based solutions. However, in practice, comparing the effectiveness of such tools is
challenging: there are no universally accepted criteria or benchmarks that allow for an objective measurement
of auditor performance [1] [2]. Many existing studies rely on limited or outdated sets of vulnerabilities, which
leads to incomplete and biased evaluations [1]. As a result, until recently, there has been no systematic
method for assessing the quality of static smart contract analyzers [2].

The shortcomings of current solutions become evident in practice. For example, a comparative analysis
of 8 popular SAST tools (static analyzers) showed that they miss about 50% of vulnerabilities and
generate an enormous number of false warnings (with accuracy not exceeding 10%) [1]. In other words,
these tools detect only half of the bugs, while the vast majority of alerts are false. On one hand, missed
vulnerabilities (false negatives) are unacceptable since they directly lead to exploits and financial losses
[2]. On the other hand, the flood of false positives overwhelms auditors and undermines trust in the tool.
Balancing these two types of errors is extremely important, yet achieving that balance is not easy in the
absence of an objective quality metric.

At the same time, we are witnessing the rapid advancement of large language models (LLMs) and their
application in code analysis. In 2024, numerous LLM-based products for smart contract auditing emerged,
offering alternative approaches to code analysis. However, to fully harness the potential of AI, objective
benchmarks for their evaluation are necessary. Just as benchmarks such as MMLU (Massive Multitask
Language Understanding) have been introduced to assess the broad knowledge of models [3] or BIG-bench
for multi-task testing of AI capabilities, there is a growing need for a specialized test suite in the area of smart
contract auditing. Attempts are already underway to compile CTF-style challenge sets for testing LLMs
in cybersecurity (). In this article, we introduce a new benchmark called CTFBench – a methodology for
evaluating AI smart contract auditors based on two metrics: Vulnerability Detection Rate (VDR) and
Overreporting Index (OI). The goal of CTFBench is to provide an objective and intuitive evaluation that
focuses on the model’s ability to detect vulnerabilities while simultaneously avoiding excessive false alarms.

Methodology
CTFBench tests AI auditor models on a series of small smart contracts, each of which is deliberately
injected with exactly one vulnerability. This design of test cases (similar to the bug injection method
[2] simplifies the evaluation: it is known with certainty that each contract contains one “flag” error that
needs to be identified. The approach is inspired by CTF challenges, which are widely used for training and
evaluation in cybersecurity (). Each test case functions as a mini-CTF: the model receives the contract’s
source code as input and must identify the vulnerability within it. Thanks to the constraint of one target
per contract, it is unambiguous whether the auditor has correctly identified the intended issue and has not
“invented” any extraneous ones.

After running the entire test suite, two key metrics that characterize the auditor’s effectiveness are calculated:

• Vulnerability Detection Rate (VDR) – the proportion of detected injected vulnerabilities. This
metric reflects the completeness of vulnerability detection and is calculated as the ratio of correctly
identified injected vulnerabilities to the total number of injected vulnerabilities (equal to the number

1



of test contracts). In other words, VDR is similar to recall in classification, focusing on the auditor’s
ability to find known vulnerabilities:

VDR = TP
𝑉

where TP is the number of detected injected vulnerabilities, and 𝑉 is the total number of injected vulner-
abilities (i.e., the number of contracts in the test set). A VDR value of 1 (or 100%) means that the model
detected all injected vulnerabilities, whereas a value of 0.5 (50%) indicates that only half were found.

• Overreporting Index (OI) – a measure of the tendency of an AI auditor to generate false positives
in error-free contracts, normalized by the size of the codebase. For this metric, a separate set of
contracts—guaranteed to have no vulnerabilities (neither natural nor injected)—is used. Every alert
triggered on these error-free contracts is a false positive. The index is calculated as the number of false
positives divided by the total number of lines of code in the set, providing a per-line probability of
overreporting:

OI = FP
LoC

where FP is the total number of false positives (alerts triggered on error-free contracts), and LoC is the total
number of lines of code in the error-free set, computed using a tool like cloc. An OI of 0 indicates no false
positives, while a higher value (e.g., OI = 0.01) suggests 1 false positive per 100 lines of code.

The combination of VDR and OI provides a holistic view of an auditor’s quality. Each agent (model) can be
represented as a point on a plane, with VDR plotted on one axis and OI on the other. This representation
visually demonstrates the balance between sensitivity (the ability to detect as many vulnerabilities as
possible) and selectivity (the ability to avoid flagging non-existent issues). The ideal algorithm detects
all vulnerabilities (VDR = 1.0) with no false alarms (OI = 0.0) – graphically, this is the point in the top left
corner of the plane. In practice, models typically achieve a compromise between these metrics. Analyzing
the positions of these points allows for a direct comparison of auditors: if one model has both a higher VDR
and a lower OI than another, it dominates and is objectively superior. In cases where one model has a
higher VDR but the other a lower OI, the VDR–OI plane allows stakeholders to evaluate which approach is
preferable depending on the needs: sometimes it is more important to catch as many bugs as possible (even
at the cost of extra warnings), while in other situations it is crucial to minimize noise so as not to distract
developers with false alarms. Our benchmark provides a uniform measurement protocol: all models are
subjected to the same test cases, and the metrics are calculated automatically, eliminating subjectivity. This
approach aligns with researchers’ call for a systematic evaluation of LLM capabilities in detecting
vulnerabilities using standardized datasets [4]. CTFBench brings this principle to life in the context of
smart contracts.

Our results

Automated Vulnerability Verification using DeepSeek R1
To minimize the human factor in the evaluation of whether the injected vulnerability was detected, we
integrate an open-source model called DeepSeek R1 into our benchmark. DeepSeek R1 is sufficiently
advanced to make such determinations, and its model weights are publicly available. The model is supplied
with both the synopsis of the injected vulnerability and the corresponding audit report, and it outputs a
binary response: YES (indicating that the vulnerability was detected) or NO.

2



OI

V
D
R

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

ARMUR

Aegis

deepseek_r1

openai_o3_mini

savant.chat

openai_o3_mini_high

AuditOne

QuillShield

SCAU

Code Genie AI

grok 3 thinking

slither

Figure 1: Performance of AI auditors in the VDR–OI space

3



To further reduce ambiguity in the model’s judgments, we propose running DeepSeek R1 on each report for
𝑁 = 3 independent trials. In this setting, every occurrence of a YES result contributes to the total count
of detected vulnerabilities, and the outcome is averaged over multiple runs.

Furthermore, to accurately assess the total number of triggered alerts in error-free contracts, DeepSeek R1
is also employed to count the number of false positives reported. This counting is repeated for each of the
𝑁 runs, and the value is normalized by the total lines of code across all runs.

Let 𝑉 be the number of smart contracts with injected vulnerabilities in our test suite. For the 𝑖-th contract
and the 𝑗-th run, let:

𝑑𝑖𝑗 ∈ {0, 1}

denote the binary outcome (with 1 indicating a YES response and 0 indicating NO). Then, the number of
true positives over 𝑁 runs is given by:

TP = ∑
𝑖,𝑗

𝑑𝑖𝑗

and the Vulnerability Detection Rate (VDR) is computed as:

VDR =
∑𝑖,𝑗 𝑑𝑖𝑗

𝑁𝑉

where 𝑁𝑉 is the total number of vulnerability instances across all runs (i.e., the number of contracts
multiplied by the number of runs).

Similarly, let 𝑀 be the number of error-free smart contracts, and LoC be the total lines of code in this set.
For the 𝑖-th contract on the 𝑗-th run, let 𝑓𝑖𝑗 denote the number of false positives reported. Then, the total
number of false positives over 𝑁 runs is:

FP = ∑
𝑖,𝑗

𝑓𝑖𝑗

and the Overreporting Index (OI) is calculated as:

OI =
∑𝑖,𝑗 𝑓𝑖𝑗
𝑁LoC

where 𝑁LoC is the total lines of code across all runs (i.e., the total lines of code multiplied by the number
of runs). This multi-run approach ensures that the evaluation of vulnerability detection and overreporting
is robust, reducing the influence of any single, potentially ambiguous result from DeepSeek R1.

Typology of AI Auditors in the VDR–OI Space
By placing auditor models on the VDR–OI coordinate plane, characteristic types of agents can be identified,
helping to determine which ones are “good” and which are “bad” from a practical standpoint:

• The Optimal Auditor – characterized by perfect vulnerability detection (VDR = 1.0) and zero
overreporting (OI = 0.0). Graphically, this zone corresponds to the point (0, 1) in the (OI, VDR)
plane (i.e., the upper-left corner). It represents the optimal sector where the ideal auditor resides – an
auditor that not only detects every vulnerability but also produces no false alarms.

4



OI (Overreporting Index)

V
D

R
 (

V
ul

ne
ra

bi
lit

y 
D

et
ec

tio
n 

R
at

e)

0.0 1.0

0.0

1.0

Optimal Diligent but Noisy

Conservative Unreliable

Figure 2: Illustration of AI Auditors Typology

5



• The Diligent but Noisy Auditor – characterized by a high VDR, but also a high OI. A model
of this type indeed detects many vulnerabilities (nearly ideal in terms of recall), but pays for it with a
large number of false positives. This “overly cautious” approach ensures that almost no vulnerability
goes undetected, but forces developers or experts to spend significant time reviewing each warning to
filter out the false alarms. Such an agent can be described as “too suspicious.” In reality, many
vulnerability scanners fall into this category. For instance, in the aforementioned study, SAST tools
with an accuracy of less than 10% imply a high OI [1] – meaning the vast majority of alerts are false.
Although such a tool catches some issues, its use is problematic due to the overwhelming amount of
noise. This type of auditor may only be acceptable in scenarios where false positives are
less critical than missed vulnerabilities (for example, during an automatic preliminary scan whose
results are later filtered by a human).

• The Conservative Auditor – exhibits low VDR and low OI. This agent is extremely cautious in
its conclusions and only raises an alert when it is almost certain of a problem. It produces virtually
no false alarms, but the price for that caution is a large number of missed vulnerabilities. Essentially,
the model operates under the principle “better to remain silent than to err unnecessarily.” This is
considered a poor type of auditor because it is unreliable: a quiet “no vulnerabilities found” report
from such a tool does not guarantee the absence of bugs in the code. A conservative auditor might
be useful only as an additional filter (e.g., to confirm the most obvious issues), but it cannot be relied
upon for a comprehensive check. In terms of metrics, its point lies at the bottom left of the graph:
OI ≈ 0, but VDR is also close to 0 – not much better than random guessing.

• The Unreliable Auditor – combines a low VDR with a high OI. This represents the worst-case
scenario, where the model misses most real vulnerabilities while generously “detecting” non-existent
ones. Essentially, such a tool is useless or even harmful: it does not improve security (bugs remain), but
creates a false sense of reliability through numerous incorrect warnings. The point for such an agent
on the diagram is located at the bottom right – extremely low detection alongside an extremely high
level of noise. In cybersecurity practice, systems of this type are typically avoided. A low VDR directly
leads to remaining vulnerabilities that can be exploited [2], while a high OI means that developers will
waste time sifting through phantom issues. This type of auditor is a clear signal that the model
or its algorithms require refinement – it likely does not understand the specifics of smart
contracts and behaves almost randomly.

It is important to note that the balance between VDR and OI depends on the context of application.
In some cases (for example, audits of highly critical contracts), it may be preferable to sacrifice precision for
maximum recall – tolerating a higher OI in order to boost VDR. In other situations, conversely, a tool that
can be trusted without the need for verification – that is, with minimal OI – is valued, even if it does not
catch the most obscure bugs. CTFBench enables any model to be quantitatively positioned on this scale,
clearly revealing its tendencies. This two-dimensional analysis is far more informative than a single metric
such as Accuracy or F1-score, which might obscure how a high score was achieved (whether through recall
or precision). It is precisely by decomposing quality into these two metrics that developers can identify a
model’s weaknesses and deliberately improve either its sensitivity or its selectivity.

Conclusion
CTFBench offers a transparent and objective way to benchmark AI smart contract auditors. By using
controlled tests (contracts with one known vulnerability) and clear metrics (VDR and OI), this approach
eliminates subjectivity in evaluation and focuses on two key aspects of security quality – detecting threats
and avoiding false alarms. Such a benchmark allows for fair comparisons among different models and tools
on a single scale. For practitioners, results presented in the format “VDR = X%, OI = Y false positives per
line” are easy to interpret: they immediately understand what percentage of vulnerabilities the automated
auditor will detect and how many false positives must be filtered out per line of code.

The advantages of CTFBench lie in its simplicity and flexibility. First, the metrics are intuitively clear
and based on principles widely used in various fields (similar to recall and false positive rates in ML), which

6



facilitates the community’s acceptance of the standard. Second, the approach is easily extendable: new
test contracts featuring different types of vulnerabilities can be added, expanding the benchmark’s coverage
without altering the calculation methodology. Third, CTFBench encourages developers to improve models
comprehensively – striving to increase VDR while simultaneously reducing OI, rather than optimizing
one metric at the expense of the other. Finally, the benchmark’s results are objective and reproducible:
whether in academic research or internal tool evaluation, different teams will obtain comparable figures,
which increases confidence in the conclusions.

The future development of CTFBench is envisioned in several directions. First, there are plans to incorpo-
rate more complex scenarios: contracts with multiple vulnerabilities or, conversely, secure contracts without
any vulnerabilities. This will allow for an expanded range of metrics (for example, taking into account true
negatives) and bring the tests even closer to real-world conditions where the number of bugs is not known
in advance. Second, it may be possible to introduce a grading system based on the criticality of vul-
nerabilities – to assess whether the auditor is equally effective at catching both trivial and non-standard
logical errors. Third, CTFBench could serve as the foundation for competitions and leaderboards, similar to
popular benchmarks in NLP: public ranking of models based on VDR–OI will stimulate healthy competition
and accelerate progress. Finally, integrating the benchmark with real repositories and audits could enable
automated feedback loops: models will be able to learn from tasks where their performance was far from
ideal, continuously enhancing their expertise.

In conclusion, the proposed evaluation method using VDR and OI fills a significant gap in the field of
smart contract auditing. It provides the objectivity and clarity necessary for trust in AI tools and lays the
groundwork for further research and improvement. CTFBench has the potential to become the standard
test by which the quality of “digital auditors” is measured—much like BIG-bench and MMLU have
become standards for evaluating large language models [3]. Objective benchmarks play a decisive role in AI
development [4], and in the context of smart contract security, CTFBench represents a step toward more
reliable and effective AI assistants capable of protecting the blockchain applications of the future.

References
1. [2404.18186] Static Application Security Testing (SAST) Tools for Smart Contracts: How Far Are We?
2. How Effective Are Smart Contract Analysis Tools? Evaluating Smart Contract Static Analysis Tools

using Bug Injection
3. MMLU - Wikipedia
4. Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities

7

https://arxiv.org/abs/2404.18186#:~:text=proposed%20for%20detecting%20vulnerabilities%20in,comprehensive%20and%20may%20display%20bias
https://www.asemghleb.com/assets/pdf/issta20.pdf#:~:text=of%20these%20tools%20and%20their,effectiveness%20in%20finding%20security%20bugs
https://www.asemghleb.com/assets/pdf/issta20.pdf#:~:text=of%20these%20tools%20and%20their,effectiveness%20in%20finding%20security%20bugs
https://en.wikipedia.org/wiki/MMLU#:~:text=In%20artificial%20intelligence%2C%20Measuring%20Massive,capabilities%20of%20large%20language%20models
https://arxiv.org/html/2311.16169v3#:~:text=To%20develop%20LLM,understanding%20tasks%20%5B%2052

	CTFBench: A New Method for Evaluating AI Smart Contract Auditors – Balancing Vulnerability Detection and Reducing False Alarms
	Introduction
	Methodology
	Our results
	Automated Vulnerability Verification using DeepSeek R1
	Typology of AI Auditors in the VDR–OI Space
	Conclusion
	References


